

$$p(\mathbf{x}_{1}, \mathbf{x}_{0}) = p(\mathbf{x}_{1} | \mathbf{x}_{0}) p(\mathbf{x}_{0})$$

$$p(\mathbf{x}_{2}, \mathbf{x}_{1}, \mathbf{x}_{0}) = p(\mathbf{x}_{2} | \mathbf{x}_{1}, \mathbf{x}_{0}) p(\mathbf{x}_{1}, \mathbf{x}_{0})$$

$$= p(\mathbf{x}_{2} | \mathbf{x}_{1}, \mathbf{x}_{0}) p(\mathbf{x}_{1} | \mathbf{x}_{0}) p(\mathbf{x}_{0})$$

$$\vdots$$

$$p(\mathbf{x}_{0:T}) = p(\mathbf{x}_{T} | \mathbf{x}_{0:T-1}) p(\mathbf{x}_{T-1} | \mathbf{x}_{0:T-2}) \dots p(\mathbf{x}_{1} | \mathbf{x}_{0}) p(\mathbf{x}_{0})$$

$$(2.1)$$

 $\operatorname{Covar}(X \mid \mathbf{y}) \approx \beta/\alpha^2 \operatorname{I} - (\mu - \mathbf{y}/\alpha)(\mu - \mathbf{y}/\alpha)^T$

	Algorithm
1.	A value of t is chosen, at random or by some process.
2.	Samples \mathbf{x}_i are sampled from X_{t-1} .
3.	A sample \mathbf{y}_i is chosen from $X_t = \alpha_t X_{t-1} \oplus G_{\beta_t}$ according to $\mathbf{y}_i = \alpha_t \mathbf{x}_i = \sqrt{\beta_t} \epsilon$
4.	Applying the function μ_{θ} one obtains $\hat{\mathbf{x}}_i = \mu_{\theta}(\mathbf{y}_i, t)$.
5.	The cost function ³ is given as $\ \mu_{\theta}(\mathbf{y}_i, t) - \mathbf{x}_i\ ^2$.
6.	Therefore, over several samples, the total cost is
	$L(\theta, t, \{\mathbf{x}_i, \mathbf{y}_i\}) = \sum_i \ \mu_\theta(\mathbf{y}_i, t) - \mathbf{x}_i\ ^2$
	which is minimized over the parameters θ .
7.	The backward conditional $p(X_{t-1} \mathbf{x}_t)$ is defined as a Gaussian with
	$\mu(X_{t-1} \mathbf{x}_t) = \mu_{ heta}(\mathbf{x}_t, t)$
	$\operatorname{Covar}(X_{t-1} \mathbf{x}_t) = \Sigma_{\theta, t}(\mathbf{x}_t) = \beta_t \mathbf{I} - (\mu_{\theta}(\mathbf{x}_t, t) - \mathbf{x}_t)(\mu_{\theta}(\mathbf{x}_t, t) - \mathbf{x}_t)^T$
	or more simply $\operatorname{Covar}(X_{t-1} \mathbf{x}_t) = \beta_t / \alpha_t^2 \mathbb{I}.$

Wiener Process: no drift $dX = \sqrt{\beta} \ dW$ Lemma 3.2.10. If $\{p_t\}$ is a family of distributions defined by an Itô process $\mathcal{I}(0, \beta, p)$, ,
defined on \mathbb{R}^n , then $\frac{\partial}{\partial t}p(\mathbf{x}, t) = \frac{\beta(t)}{2}\nabla^2 p(\mathbf{x}, t)$
 $= \frac{\beta}{2} \ div (p \nabla \log p)$.Lemma 3.2.11. Given a deterministic process defined by the ODE $\mathbf{x}'(t) = \alpha(\mathbf{x}, t)$, then
 $\frac{\partial p(\mathbf{x}, t)}{\partial t} = -\operatorname{div}(p \alpha)$.

Focker-Planck Equations Describe the evolution of the probability p(x, t) of a point at time t, undergoing a diffusion process.
Pure diffusion Lemma 3.3.14. If $\{p_i\}$ are a Gaussian family of distributions, $p_i = G_{\beta(t)} * p_0$, defined on \mathbb{R}^n , then $d_{dt} p_i(\mathbf{x}) = \beta'(t) \frac{\nabla^2 p_i(\mathbf{x})}{2}$.

We now define the reverse of an Itô process. Two processes $\mathcal{I}(\alpha_1, \beta_1, p_0)$ and $\mathcal{I}(\alpha_2, \beta_1, q_0)$ defined for a time interval $t \in [0, 1]$, are called reverse of each other provided $p_t = q_{1-t}$. An easy case where two processes are reverses is available in the deterministic case. **Lemma 3.3.15.** Non-stochastic processes $\mathcal{I}(\alpha, 0, p_0)$ and $\mathcal{I}(-\tilde{\alpha}, 0, p_1)$ defined for $t \in [0, 1]$ are reverses. **Theorem 3.3.16 (Reversibility of an Itô process).** Itô processes $\mathcal{I}(\alpha, \beta, p_0)$ and $\mathcal{I}(-\tilde{\alpha} + \tilde{\beta}\nabla\log\tilde{p}, \tilde{\beta}, p_1)$ are reverses: $\underbrace{\mathcal{I}(\alpha, \beta, p_0)^{-1} \sim \mathcal{I}(-\tilde{\alpha} + \tilde{\beta}\nabla\log\tilde{p}, \tilde{\beta}, p_1)}_{\mathcal{I}(-\tilde{\alpha}, \beta, p_0)^{-1} \sim \mathcal{I}(-\tilde{\alpha} + \tilde{\beta}\nabla\log\tilde{p}, 0, p_0)^{-1}}_{\mathcal{I}(-\tilde{\alpha} + \tilde{\beta}/2\nabla\log\tilde{p}, 0, p_1)}_{\mathcal{I}(-\tilde{\alpha} + \tilde{\beta}\nabla\log\tilde{p}, \tilde{\beta}, p_1)}.$

