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Ornstein Uhlenbeck process

the transition from x;_; to x; may be written as

Xy 4= X1 D \/EE ‘
X = X1 ®VBG

Conditional probabilities are

P(Xt \ Xt—l) = Gpg, (Xt - (ltxt—l)

One can also compute a sample from x; directly according to the formula

‘ X = @ Xo + 1/ B:G . ‘

3
ayp = | Iat .
i=1

(assuming 3; + a? = 1).

Diffusion - backward and forward processes

e Diffusion consists of a forward and a backward stochastic process, starting

with a sample zg.

e Forward process (noising)

I X, =X+ Pre I

where a; < 1 and 3; is small.

e Backward process (denoising)

| X1 = po(Xe—1[Xe) + Bre |

Five sampled processes, with expected standard

e Can be made continuous as a so-called Wiener process. -
deviation in gray

e Reverse process worked out by Brian Anderson (ANU) in 1982 paper. From Wikipedia - Wiener process
Solution involves solving a Stochastic Differential Equation.
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MARKOV #
. CHAINS

LIFE HOLDS NO TERRORS WHEN You

FLIPPIST

HAVE EMBRACED THE PHILOSCOPHY

jOF FLIPISM

Figure 2.5:
Decision” — Carl Burks, 1953,

[ AT EVERY CROSSROAD '\
8\ OF LIFE, LET FLIPISM
CHART YOUR COURSE]

When in doubt, flip a coin: life as a stochastic process. Donald Duck in “Flip
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Given any set of joint random variables Xg, X1, ..., Xy, with probability distribution p, we
can write

p(x1,%0) = p(x1 | x0) p(x0)
P(xa, X1, %X0) = p(Xa | X1, Xq) p(X1, X0)

= p(xa | x1,%0)p(x1 | X0)p(%0)

p(x.r) = p(xr |XU:T71)17(XT71 | %0:7—2) ... p(x1 \ Xg) p(Xo) (2~1)

Andrej Markov: Image from Wikimedia commons

Markov Property: P(Xe | Xo:—1) = p(xe [ X—1)

This allows (2.1) to be written as

P(XG;T) = P(XT \ XT71)P(XT71 |XT72) .- -P(Xl I XO)P(XD)

T
= p(xo) [[ pxe | xe-1) -

11/06/2025



Markov Chains

Given any set of random variables Xg,..., Xp associated with a
Markov Chain, the joint probability distribution ¢ can be written

q(x0.7) = q(x7lxr_1)q(x_11%7-2) - - . ¢(x1]%0)¢(x%0)

Does a Markov Chain have a reverse Markov Chain

9
Inversion of a Markov Chain
Joint probability of a Markov chain can be written as
a(xp:r) = q(xrlxr—1) qlxr—|xr_2) ... a(xi[x0) g(x0)
T
= qlxo) [] aleelxe—1) - 3)
=1
Inversion of a Markov chain.  The formula (3) defines a joint probability
distribution ¢ on all the random variables x; for ¢t = 0,..., T. Using Bayes’
Law, we can also write (3) as
ig
q(x—1lx)gl(x)
X = q(x _
g(xo.7) = (%o 11:11 i ]
B q(xolxi)q(x1) q(xi)xz2)g(x2) q(xr_1|xr)g(xr)
= q(xo
q(xo0) q(x1) q(xr-1)
_ D Loalz) )X abxifxa)a(xa)  aleroixr)a(xr)
D ‘D() >
This product telescopes by cancellation of the factors ¢(x;), resulting in
T
q(x0:7) = q(x1) Hq (xe—1fxe) -
t=1
10
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Y=Xa&GCqa

w(X |y) =~ y+ BVlogpx(y)

Theorem 2.2.5 Invertibility of Markov Chains. If a joint probability distribution po.r
is defined by a Markov chain with initial probability distribution p(xo) end forward condi-
tional probabilities p(X, | X;_1), then it may also be expressed as a “backwards”™ Markov chain
with initial probability p(xr) and conditional probabilities p(X;_1 | X¢).

A

11

Computing probabilities of samples, after training

Write probabilities in two ways

T
qa(xoer) = qler) [ aCee1/x1)
T

= q(xo) H q(x|x_1) .

t=1

q(x0) = q(xr) [ | akal)

habalxn)

More exactly

B T pae_y i)
G(Xn) = 'I(XT) H S

S W)

12
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normalized color

Q

Figure 1: Computed probabilitics for points on a swiss roll. The left-hand figure shows
graphically the probabilitics of samples (2-d coordinates) from the swiss-roll dataset. For
each point, the log-10 probability of each poini (relative to a reference value) is encoded as a
colour walue. The graphic shows that points lying on the swiss-roll have probabilities a few

orders of magnitude higher than all out-of-distribution points, and up to 10° times higher
than more distant data (coloured black and dark red). The right hand graphic shows the
standard-deviation of different estimates of each point. Querall, the standard-deviation of the
probability estimate was around 0.01 of the probability value for each point.

13

Form of inverse conditional probabilities

14
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Form of inverse conditional probabilities

This is the approximation to the probabilities when q(x;)
is linear in the region of support of g(x¢|x;—1).

Mean learnt by training

‘ (Xe—alxe) = (% + me)/ﬂ‘t ‘ —

and covariance matrix

Variance approximately same as

| = ;’5?(1 = ;32mmT}/0? . ‘ C— forward variance.

where

Bonus:

15
How do we find the backward conditional mean?
(learning)
Theorem 2.2.8. Let X, Y be a pair of joint random variables and let f.(y) be the function
that minimizes the loss
L{fs) = Eixyymixyy [ o) — xI7]
then
Joly) = Exexiy[x] = p(X |y) .

16
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Theorem 2.2.6. Let X and Y be two vector-valued random variables suech that
Y=X&®Gs.

Assume that px is well approzimated by a linear function in the support region of the Gaus-
sian Gg(x —y), o Gaussian with variance 3 centred at y. Then

WX |y)=y+3Vlogpx(y) (2.16)

Covar(X |y) = 31— (u—y)(p—y)" (2.17)

=81+ 0(5%), (2.18)

abbreviating p(X |y as p. A

Theorem 2.2.7. Let X and Y be two vector-valued random variables such that

Y=aX@Gs.

WX |y)=(y+8Vlogpx(y/a)) /o
Covar(X |y) = 3/e® T — (u—y/a)(p—y/ o)

17

p(X|Y=x)—x

IfY =X @Gy for § small, then Vg py(x) = 5

L, Halx) —x

Vlog px(x) 3

18



Ainimizing least-squared error computes the conditional

Theorem 2.2, Let X,Y be a pair of joint random variables. Let f.(y) be the
function that minimizes the functional

[ L(fo) = Egeyymixy [1fo(¥) — x|7] ]

then
[ fly) = Ex~X|y[x] = p(Xly) . ]
]
Proof. We summarize the proof given above. By definition,
J. = argmin By [1oy) — x]
[
— arg min By oy [Exexiy [Ifo(y) - xI]
This minimum is attained by f,(y) defined independently for each y by
£o(x) = argmin By [I% - xI]
= Bonxpy[x] -
]

19

Algorithm

1. A value of 1 is chosen, at random or by some process.

2. Samples x; are sampled from X; ;.

. A sample y; is chosen from X, = o, X, | & G4, according to y; = op%; = /B e.

4. Applying the function py one obtains %; = pg(y,.1).

o

. The cost function® is given as ||po(yi. t) — x|%

6. Therefore, over several samples. the total cost is

L0t Ax; vih) = Z oty t) — =12

which is minimized over the parameters #.
. The backward conditional p(X; 1|3 ) is defined as a Gaussian with

Xy %) = pg(x,t)
Covar(X,_1 | x,) = S (xe) = BT — (pp(xe, 1) — X4 ) (polxe, 1) — %) 7

=1

or more simply Covar(X, | |x;) = 3 /o 1.

20
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Finding the backward conditionals by training.

As long as the variances 37 are small, a reasonable approximation is that the
backward conditionals are normal distributions, and that they have the same
variance as the forward conditionals. In this case, one can assume a form

Po(%e-1lxe) = N(xi-1; po.e(x2). 1) | (18)

and the goal of training is to compute the means

pou(xe) = By, (X, e [Xe—1] -

21

Gretel, this time I poisoned

the bread. We!l just

follow the 4rail of dead
birds home.

The solution

22
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Computing the way back.

23
Continuous Stochastic Processes
R N O R T R ! :?5'_),:““,'.
S, . (B >
Stochastic dufusion  «
e wE U REOR] 1L BIS '
«w< directional drift =
e ‘ /
CYBERNETICS L NER
r/ DCESS
| A
=
[
o o 90 0 0
Ito process
24

11/06/2025

12



4 Continuous diffusion

20)

can be made continuous, as follows:

The formula for x,

| x() = at)xo + Blt)e | (21)

po(xo) s Probability Flow ODE trajectories y| (x, )

25

26
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The term “stochastic” originates from the Ancient Greek word gtoyaotikdc (stokhastikds), which means
"skillful in aiming” or "pertaining to guessing.” This, in turn, is derived from otoydlopou (stokhdzomai),
meaning "to aim at a target” or "to guess,” and otoyoc (stokhos), meaning "an aim” or “a target.”

ENAIKTIONAS

In English, “stochastic” was first recorded in 1662, used as an adjective meaning "pertaining to
conjecturing.” Over time, its usage evolved, and by the 20th century, it came to describe processes
involving randomness or probability.|For instance, in 1934, mathematician Joseph L. Doob used the term

"stochastic process” to refer to a collection of random variables indexed by time or space. o

Teday, "stochastic” is commonly used in fields such as mathematics, statistics, and physics to describe

systems or processes that are inherently random or probabilistic in nature.

While "stochastic” is the primary English word directly connected to otoyoc, other terms like “stich” and
"stichos" are derived from related Greek roots such as otiyoc (stikhos), meaning "row” or "line," which is

associated with the concept of alignment or order.  suwrcasvcss  svmmane 0w

GEOMETRIES OF LEARNING OCTOBER PIMEETING

..

27

How does a probability

ROBABALITY DISTRIBWUTIONS
> TIME————

28

distribution evolve with time?

28

11/06/2025
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Drift but no diffusion

. If a family of probability density functions {p} are associated
with drift a(x,t)

901 = ~(Va(x), (1) ~ RO ol 1)

29

QOil floating on a slowly moving
stream. How does the density of
oil at a given point in the stream
change?

Lz, +
jc("o) (-,) )

xte) = £(%,t)

4 $0t) = & (50,0, ¢)

30
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Lemma 3.2.11. Given a deterministic process defined by the ODE x'(t) = a(x, 1), then

Ip(x,t)
ot

= —(Vp(x,1), a(x, 1)) — p(x, t)div a(x, t)

= —div (pa)

Lz, +
'F('I‘,)e) )

xte) = £(%,¢)

4 ) = oL (5,0, €)

31

Wiener Process: no drift

dX = /B dw

Lemma 3.2.10. If {p;} is a family of distributions defined by an Ito process Z(0,8,p), ,
defined on IR™, then

= p(x, 1) = fivzp(xst)

2 S
5 (3.6)
=g div (pVlogp) .

Lemma 3.2.11. Given a deterministic process defined by the ODE X' (t) = a(x,t), then

Ip(x,t)
ot

= —div (pa) .

32
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Focker-Planck Equations

Describe the evolution of the probability p(x, t) of a point
at time t, undergoing a diffusion process.

Pure diffusion

Lemma3.8.14. If {p} are a Gaussian family of distributions, p, = Gy * p,, defined on
R", then
Vep(x)

d ”
ditp’(x) =§ (”T -

33
Theorem 3.2.12 (Fokker-Planck equation). For a general Ité process T(o,[3,po) with
vector field a(x,t), noise-schedule B(t) and starting distribution py(x),
19)
a—? = —div(pv) .
where
B(t
v(x,t) = a(x,t) — %Vlog])(x,t) :
34
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Lemma 3.3.13. The process T(w, 3, pg) is equivalent in distribution to the non-stochastic
process®
I(a — B/2V logp, 0, po)

In fact, to any process
Tl — (A/2)Viogp, 8 — A po) »

where G(¢) — A(¢) > 0 for all £.

Proposition 3.3.14. Two processes (o, 81, po) and I(az, B2, qo) are equivalent in distri-
bution if and only if po = qo and

oy — B1/2Vlogp = as — 32/2V logp .

35

We now define the reverse of an Itd process. Two processes Z (a1, 81, po) and Z(aw, 31, qo)
defined for a time interval ¢ € [0, 1), are called reverse of each other provided p, = ¢1_;. An
easy case where two processes are reverses is available in the deterministic case.

Lemma 3.3.15. Non-stochastic processes I(ev,0,po) and I(—é,0,p1) defined for t € [0,1]
A

are reverses.

Theorem 3.3.16 (Reversibility of an Ité process). [t processes T(cv, 3, po) and I(—a+
BV 1ogp, B,p1) aie reverses:

T(ev, B, po) ' ~ I(—&+ BV 1ogp, B,p1)

Proof. We compute

I(a, B.po) a—3/2Vlogp,0,po) "
—&+ 3/2Vlogp,0,p1)
—a+ fVlogp— B8/2V1ogp,0,p1)

~I(
~I(
NI(
~TI(-a + BV log p, 57171) .

36
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Eaplek Euter

Yo+ iy

Runge-Kutta method

Yo+ Pka/2
Yo+ hii /2

Yo

GEOMETRIES OF LEARNING OCTOBER PIMEETING

Eviar (hal stas g

e

§ i’) 5

Now we pick a step-size h > 0 and define:

Yni1 = Yn + % (ky + 2k + 2k3 + Fy) ,
thti =ta+h

forn=0,1,2,3, .., using¥
k1= f(tn,pm),

h kl Yo-+hky
ky = f(tn+51yn+h?)1

h k; ;
k:} = f(tn+_xyn+h_2) ) ok el

2 2 you /2
ky = f(tn +h,yn + hks). "

GEOMETRIES OF LEARNING OCTOBER PIMEETING

..

19
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41
Exercise: Verify that the reverse of the reverse is the original process. In other words,
show that
I(~a + fVlogp, 5,p1) " = I(a, B, po)
Exercise: Let py be an initial distribution, and define a (time independent) vector field
by a(x,t) = 8(t)/2Vlogpy. What can be said about the Ité process Z[a, 5, pg)?
42
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43
Failure cases - always
something that will go
wrong.
44
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