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Image Generation Methods

e Diffusion models:
o  Stable Diffusion, Imagen, Dall-E 2
e Transformer-based models:

o Parti, Muse
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Image Tokenization
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Parti (Autoregressive)

! ViT-VQGAN
Inference
Transformer Decoder L. Image Detokenizer

Transformer Encoder (Transformer)

__________ Image Tokenizer

Train (Transformer)
t1 t2 tN <so0s> il iz iM ('"-: >
ﬁ

Two dogs running in a field




Google Research

Muse (Parallel Decoding)
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Muse (Parallel Decoding)
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The Muse 3B model is 10x faster than Parti/lmagen 3B on TPUvA4.
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Muse (Parallel Decoding)
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Markov Random Fields (MRFs)
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Markov Random Fields (MRFs)
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Motivation
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Motivation
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Motivation

e 8192 tokens in the vocab.

e Number of permutations:

o  2x2 patch: O(10™)
o  3x3 patch: O(10%*)
o 16x16 patch: O(10'092)

e Only a small subset of token
arrangements will be “valid”.

e Highly confident tokens
should be able to influence
nearby tokens
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Markov Random Fields (MRFs)

e Define a discrete random variable XI. at each cell .

e Connect the random variables to form a random
field.

e Anassignment to the random field X, X, ..., X, = an image.
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Markov Random Fields (MRFs)

P(XlZafl,XQng,...,XNZZUN):P(XZX)

P(X = x) = - exp(~ E(x)

* Maximize P(X = x) = Minimize F(X = x)
« We now need to define E(x)such that a
photorealistic image will have low E(x).
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Model Formulation

F(x) = unary_cost + pairwise_cost

Unary Cost
e cost(X; =1) =7

e You pay a penalty if your label doesn’t agree with
the classifier.
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Model Formulation

F(x) = unary_cost + pairwise_cost

Unary Cost
e cost(X; =1) ="

e You pay a penalty if your label doesn’t agree with
the classifier.

Pairwise cost
* cost(X; =0, X, =1")="
e You pay a penalty if you assign “incompatible”
labels to two “neighboring” pixels.
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Model Formulation OO O q
efele OO0

E(x) = unary_cost + pairwise_cost QO 0[O
elelle 5|00

Unary Cost ONONC DIOI0O
e cost(X; =1)=" OO Jee
e You pay a !oenalty if your label doesn’t agree with Q O | O O
the classifier. OO MO ;-;'
Pairwise cost Q -~ - , .f

* cost(X; =0, X, =1")="

e You pay a penalty if you assign “incompatible” [COSt (X; = 1) = —logit;(l )}
labels to two “neighboring” pixels.
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e The graph s truly fully-connected. OO OO
e Spatial relationships are not fixed. OO OO
e Label compatibilities are not fixed. 8 8 } 8 8
Q0O DOIO

[cost(Xz- =1)=— logiti(l)} |

[cost(Xz- — l/,Xj =1") = —¢(l, l”)S(iaj)]
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Inference Algorithm

E(x|I) = Z unary(x;) + Z pairwise(x;, z;)
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Inference Algorithm

E(x|T)

Z unary(z;) + Z pairwise(z;, ;)

1>7

1
Z(I)

exp (—

E(x[T)) =

=x|I) ~

H Qi(x;)
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Inference Algorithm

E(x|I) = Z unary(z;) +

Z pairwise(z;, ;)

1>

1
Z(1)

exp (~E(x|1)) = P(X = x|T) ~ [ ] Qia,
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Inference Algorithm

E(x|I) Z unary(x;) + Z pairwise(z;, ;)

1>7

"o ZEI) exp (—E(x|I)) = P(X = x|T) ~ H Qi)

D1 (Q|P) = Eqlog(Q(x)) — log(P(x))]

[1] P. Krédhenbuihl and V. Koltun. Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, NeurlPS , 2011
[2] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009
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Inference Algorithm

[ ™/ 1T\ \N Y /N .\ . . N ]

Algorithm 1 Inference Algorithm
Qi(k) < softmax(f;(k)), V(i, k)

for num_iterations do

Qi(k )FZJ ) W54;Q;(k), V(i, k)

Qi(k) < Z L Wer Qi(K'), V(i, k)
Qz(k) — Qz( )+fz(k) V(i k)

Qi (k) < softmax(Q;)(k), V(i, k)
end for
return ()




MRFs for Fast Image Generation
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Figure 3. Given individual token probabilities from an underly-
ing Transformer-based image generation backbone, the MRF im-
proves image quality by utilizing learned spatial and label com-
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patibility relations in the latent token space.
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MRFs for Fast Image Generation

Transformer
Text Prompt Model MRF Model
(e.g. Muse)
e  Much of the e Fixes the incompatible
heavy-lifting is tokens

done here.
e Light-weight and super

e  Bulky, slow model fast
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Speeding Up Inference with MRFs

Model Time (ms)
Muse base (single step) 10.40
Muse super-resolution (single step) 24.00
MREF inference on base 0.29
MREF inference on super-resolution 0.29
Detokenizer 0.15
Muse 442.05

MarkovGen (ours) 281.03
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Generation Quality

Model FID
Muse base (18 iters) 15.48
Muse base (24 iters) 14.13

Muse base (18 iters) + MRF  13.00

Table 1: Quantitative evaluation of FID scores on the MS-COCO [Lin et al., 2014] dataset for
256 x 256 image resolution. The Muse model with MRF applied after 18 steps outperforms both the
Muse model with 24 as well as the model with 18 steps.
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Qualitative Results

Step 1 Step 2 Step 3 Step 4

Early Exit Muse

MarkovGen

Figure 4. The first four steps of the Muse super-resolution model without (top) and with (bottom) the application of the MarkovGen MRF
model. Note that the MRF fixes complex object structures such as the dog’s face as well as texture-inconsistencies in areas such as the

brick wall. MarkovGen generates good looking high quality images starting from the first step.
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An oil painting of two rabbits in the style of American Gothic, wearing the
same clothes as in the original.

2,
3

A robotpalntedas é’ra:f 'k wal walk:l.s 1nfro}|tofthe A set of 2x2 emoji icons with happy, angry, surprised and sobbing faces. The
wall, and grass is growing out of cracks in the concrete. emoji icons look like pandas. All of the pandas are wearing colorful sunglasses.

Figure 6. Within each set of three, MarkovGen (right) speeds up Muse (left) by 1.5X and improves image quality. A similar speed up by
only reducing the step count with early exit Muse (middle) results in a significant loss of quality.
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Qualitative Results

A blue Porsche 356 A cartoon house with A bowl of Chicken Pho A photo of a teddy A heart made of wood
parked in front of a red roof bear made of water
yellow brick wall

Figure 7. Example generations of the Early Exit Muse super-resolution model running for 3 (out of 8) steps (top) and the MarkovGen
model after the application of the MRF model (bottom). We observe a significant reduction in visual artifacts, e.g., in the brick wall behind
the car. We further see key improvements to complex object structures such as the blue car and the teddy bear’s face.



Google Research

Quantitative Results
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Figure 5. Percentage of prompts for which human raters prefer images by a given model in a side-by-side comparison. We observe that
human raters strongly prefer the images generated by MarkovGen over those of both early exit Muse (left) and even the more expensive
and slower full Muse model (center).
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Thank you!



