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Overview
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9:10 - 9.50 Srikumar Ramalingam
9.50 - 10.30 Shobhita Sundaram
10.30 - 11.00 Break

11.00 - 11.30 Varun Jampani

11:00 - 12:00 Dilip Krishnan

12:00 - 12:30 Sadeep Jayasumana
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Cornerstones of the Text-to-Pixels Journey

Image Evaluation Methods

Thinking Slow and Fast: Recent Trends in 3D
Generative Models

Parallel Decoding and Image Generation

Structured Prediction Algorithms for Fast Image
Generation



Text-to-Image Generation

A robot cooking in the A ro-bot painted-as graff!ti on A raccoon we_aring formal A hyper_—realistic goncept art
kitchen. a brick wall. a sidewalk isin  clothes, wearing a tophat. of an alien pyramid

front of wall, grass is growing The raccoon is holding a landscape, inspired by

out of cracks in the concrete. garbage bag. ArtStation artists.

Jayasumana et al. Markovgen 2023.



Text to video Generation

https://lumiere-video.github.io/
Bar-Tal et al. Lumiere, 2024



Text-to-3D Generation

https://dreamfusion3d.qgithub.io/

Ben Poole, Ajay Jain, Ben Mildenhall, Jon Barron




Text-to-Image backbone

4 Three-quarters front view of a\ DJfoS_IOJ‘I b sed
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Transformers and Diffusion models

@elonmusk
Who should be President in 20327

Transformers 77.4°

Diffusion 22.69

1,178,197 votes - Final results



t2i models are centerpieces of many generative models

Text-to-3D Text-to-Video
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Image features with similar objects are close

Near duplicates

Sussex spaniel

Features corresponding to images
containing same semantic objects are
close to each other in the embedding
space.

9 dno ? ! i 4
\ ¢ A | y @
(red wolf, maned wolf, (timber wolf, grey wolf,
Canis rufus, Canis niger) gray wolf, Canis lupus)
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Image-Text Co-Embedding Spaces

Bipartite mapping between

e i feemes” image and text embeddings

«

“self-driving car” @ Q?
@

“ML software”

Image-Text Co-Embedding Space



Single tower vs. two tower models

classification

I

Image
Encoder

1

image

Single-tower classification with ResNets
or ViTs trained on a chosen set of labels
such as in ImageNet.

alignment

AR

Image Unimodal
Encoder Text Decoder
image text

Learning two tower models allows us to
use zero-shot classification methods on
different classes.



CLIP/ALIGN

(1) Contrastive pre-training
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Text-lmage Coembedding References

[CLIP] Learning Transferable Visual Models From Natural Language Supervision, 2021.

[ALIGN] Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision,
2021.
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Background: Visual Words

Individual parts of an object reveal a lot of information.




Background: Visual words

* Quantize via
clustering, let
cluster centers be
the prototype
“‘words”

\Word #2

* Determine which
word to assign to
each new image
region by finding
the closest cluster
center.

Descriptor’s
feature space

Source; David Nister



Background: Visual words

Source: Kristen Grauman



Image Tokenization

19 136 27 32

Tokenizer Detokenizer |

96 | 85 49 |82

16 x 16
256 x 256 x 3 256 x 256 x 3



Key Idea in VQGAN

e Use for CNNs for learning local features and transformers for long range
interactions
o CNNs are used to learn a codebook of context-rich visual parts.
o Transformers are used to model the long range interactions among the
individual visual parts.
e Efficient image generation backbone that allows conditional inputs (similar to
ControlNet).
e Default choice in Latent diffusion, MUSE, Parti, Paella, etc.

Taming transformers for high-resolution image synthesis,
Patrick Esser*, Robin Rombach#*, Bjérn Ommer



Overview of VQGAN

Codebook Z
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Two stage training:
e Learn the encoder, decoder, and codebook.
e Learn the transformer to synthesize images with conditional inputs.



Codebook
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Codebook

real/fake
(" Codebook Z Transformer | | t e e
dulilhn | AR
p(s) = [; p(sils<i) .. o f
. : f r

2a = () = (argminljs; -

Z2LEZ



Learning the codebook

3 =G(2q) = G(@(E@))) o iirenermstorveros o
TS . vice versa.

Lvo(E, G, Z) = |lz — &I +||sg[E(=)] — zql3

____________________________

e Reconstruction loss optimizes the encoder and decoder.
e L2lossto move the encoder outputs towards the codebook entries and another
L2 loss to move codebook entries towards the encoder outputs.

[Aaron van den Oord et al. Neural Discrete Representation Learning, 2017]



Learning a perceptually rich codebook

Discriminator wants to maximize this, while the

generator wants to minimize this.
GAN Loss: / _______________________________________

_____________________________________________________

Q* — aggcl;nzin mIE)i.X ]Epr(x) [[:VQ(E, G, Z)

LAl E, G, 2}, D)]

e Learnthe encoder, decoder, and codebook with a perceptual and GAN loss.



Feature Codebook References

e [VQGAN]: Taming Transformers for High-Resolution Image Synthesis, 2020.
[VQVAE]: Neural Discrete Representation Learning, 2018.
e Video Google: A Text Retrieval Approach to Object Matching in Videos, 2003.
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Markov Random Fields (MRFs)

factor nodes

/

variable
nodes

Goal: find most probable
interpretation of scene

Minimize an energy function:

FE(x) = unary_cost + pairwise_cost

Solve using using graph cuts or BP



Model Hierarchy (MRFs -> CNNs -> Transformers)
/ factornodes \ / 5? Extract features from / Long-range interaction! \

patches hierarchically

variable
nodes

. /

MRFs with 4 or 8-neighborhood CNNs are very good at extracting Transformers allow long range

were solved efficiently using graph  local features! interactions!
cuts and belief propagation.

‘ Transformers

Graphcuts AlexNet
1999 2012 2017




Vision Transformer

Vision Transformer (ViT) Transformer Encoder
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Conditioned Synthesis using Transformers

With the encoder, decoder, and codebook, we can treat the image synthesis problem

as sequence prediction problem.
[...,743, 408, 221, 200, ....]

3861 | 2201 | 743 408

221 200 4999 | 6021

421 8001 | 7871 1213 > |

7495 | 4259 121 910

Token Image

e Based on some ordering, the token prediction can be achieved

auto-regressively by feeding the previous tokens.
e To provide conditional inputs, we can learn another codebook if it has spatial

extent to generate token indices for conditions.



Different ordering of tokens for image synthesis
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e The ordering is trivial for language tasks, whereas there is no easy way to fix the
ordering for images.



Class conditioned Image Synthesis

256x256 images conditioned on ImageNet



Conditioned Image Synthesis

Depth -> Image

Edge -> Image




Efficient Text-to-Image Generation using Muse

Text Embeddi
Text Prompt: “A cat ext Embedding
looking at a dog” ~—> TextEncoder —-EEEENE

Input Masked Reconstructed
Image Tokens Tokens

.. — Base ...=
VQ Tokenizer 1 T Transformer — .=_

16x16 +

Cross Entropy
Loss

256x256

Sequential
Decoding

with Autoregressive
Transformers

t=200

Scheduled
Parallel
Decoding
with MaskGIT




MarkovGen: MRFs to speedup Muse

F(x) = unary_cost + pairwise_cost

Label compatibility
e(®;, &)
8192

Detokenization 4 1 éDetokenization
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Imperfect token Image Fixed token image



MRF: Model Formulation
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Unary Cost O O O O
e cost(X; =1)=" OO Jee
e You payg !oenalty if your label doesn’t agree with Q O | O O
the classifier. O O Q f-i‘
Pairwise cost ﬂ ® - . ,ﬁ

* cost(X; =1, X;=1")="

e You pay a penalty if you assign “incompatible” [COSt (X; = 1) = —logit;(l )}
labels to two “neighboring” tokens.




Speedup over Muse without quality loss.

Full Muse: All steps Early Exit Muse: Fewer steps MarkovGen: Fewer steps + MRF
1.5x faster 1.5x faster

A robot painted as graffiti on a brick wall. a sidewalk is in front of the
wall, and grass is growing out of cracks in the concrete.

Model Time (ms)
Muse base (single step) 10.40
Muse super-resolution (single step) 24.00
MREF inference on base 0.29
MREF inference on super-resolution 0.29
T5-XXL inference 0.30
Detokenizer 0.15
Muse 442.05
MarkovGen (ours) 281.03




MRF and Transformers References

e Masked generative image transformer. In: CVPR (2022)

e Muse:Text-to-image generation via masked generative transformers. ICML
(2023)

e Markovgen: Structured prediction for efficient text-to-image generation (2023)

e Hierarchical text-conditional image generation with clip latents. preprint (2022)

e Photorealistic text-to-image diffusion models with deep language
understanding. preprint (2022),

e Scaling autoregressive models for content-rich text-to-image generation. In:
ICML (2022)
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Basic idea -> Diffusion Model

Fo[yvard diffusion
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Reverse diffusion

[Deep unsupervised learning of nonlinear thermodynamics, Sohl-Dickstein et al. 2015]



Diffusion Models

“a hedgehog using a “a corgi wearing a red bowti
calculator” and a purple party hat”

“a fall landscape with a small
cottage next to a lake™

“a surrealist dream-like oil “a professional photo of a “a high-quality oil painting “an illustration of albert
painting by salvador dalf sunset behind the grand of a psychedelic hamster cinstein wearing a superhero
of a cat playing checkers” canyon” dragon” costume”

“ared cube on top
of ablue cube”

“a stained glass window

“a painting of a fox in the style
of starry night”

of a panda eating bamboo”

AN

“a crayon drawing of a space elevator” “a futuristic city in synthwave style” “apixel art corgi pizza” “a fog rolling into new york”

[Nichol et al. GLIDE 2021]



Background: Diffusion models

”Systematically and slowly destroy structure in a data distribution through an iterative

forward diffusion process.

‘—-ds Ppp— -ii. -:ﬁ P dr“ "“h‘ ,_;m s m‘&'ﬁ

AN \/\/

We then learn a reverse diffusion process that restores structure in data, yielding a
highly flexible and tractable generative model of the data.”

[Deep unsupervised learning of nonlinear thermodynamics, Sohl-Dickstein et al. 2015]



Background: Diffusion models

Sampling

AA‘AA AVAYAVES
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Training

e While training we start with clean images from the dataset, add
noise and try to predict the added noise.

e While sampling, we start with noise and iteratively denoise the
image to generate an image.




Diffusion model

Mean squared error loss: | |€ g pT€d| |2

Diffusion

noise €

Noised image Lt

image ()

[Nichol et al. GLIDE 2021]



Training Diffusion models

Markov chain of latent variables by progressively adding Gaussian noise.

Sample an
image from
the data
distribution



Training Diffusion models

xo ~ q(xo) X1 9 TT

Sample an
image from the
data distribution

Markov chain of latent variables by progressively adding Gaussian noise.

q(x¢|xt—1) =N (x5 v/ 1 — Bixi—1, Be])

1.0

08
/B 0.6
t 0.4

0.2




Training diffusion models

= N(Xt; V11— 5txt—1,5t1)

e We are somewhat shrinking the mean and
moving it towards the 0.
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e |If the total noise added is large enough, and
if each step adds small enough noise, then
can b&approximated by . N(0,7)




Training Diffusion Models

ro ~ q(r0) 21 T2
Sample an Markov chain of latent variables by progressively adding Gaussian noise.
image from the ; -
data distribution —— — i
ar=1—=0  ay=][_; o

q(x¢|x0) = N (x¢; Varxo, (1 — ay)I)
(1-—ay) <1,v/a<1



Loss Function

Diffusion

Lsimple . Etrv[l,T],:IZONQ(CEO),GNN(O,I) [||€ o 69(513757 t)Hz]



Sampling and Training pseudocode

Algorithm 1 Training Algorithm 2 Sampling
l: repeat 1: xr ~ N(0,1)
2: XONQ(,XO) 2: fort=T,...,1do
N [j{;‘(‘(f)orlf)n({lv --+»T}) 3. z2~N(0,I)ift > 1,elsez=0
¥ e , ™
5: Take gradient descent step on 4 Xe-1= ﬁ (xt - \}T—Q_‘:eg(xt,t)) + o1z
Ve ||e — €9(vVarxo + V1 — Qe t)||2 5: end for
6: until converged 6: return xo




Classifier Guidance

f With no guidance

y Label -> “cats”

[Diffusion Models Beats GANs on Image Synthesis (Dhariwal & Nichol 2021)]



Classifier Guidance

Diffusion

Final Prediction is given by:

flxe,y) + 5.V, p(yle:)

Scale factor for tradeoff.

vﬂ?tp(y|xt)

Classifier

Classifier trained with noisy images

[Diffusion Models Beats GANs on Image Synthesis (Dhariwal & Nichol 2021)]



Classifier-Free guidance

Diffusion

model

Final Prediction is given by:

flzey) +5.(f(we,y) = f@, )

\

Scale factor for tradeoff.

<Same Model
Diffusion

model

@
. ‘ f(xtv—)

[Classifier-Free Diffusion Guidance (Ho & Salimans 2021)]



CLIP Guidance

Diffusion

Final Prediction is given by:

(@) + 8.Va,ci(ze) " ce(y)

Scale factor for tradeoff.

thp(y|:ct)

ci(z) T e(y) Vi) e (y)

CLIP trained with noisy images



CLIP verses classifier-free guidance

Classifier-Free Guidance

CLIP Guidance



Comparison

XMC-GAN Real Image

DALL-E

GLIDE (CLIP Guid.)

GLIDE (CF Guid.)

“a group of skiers are
preparing to ski down
a mountain.”

“a small kitchen with
alow ceiling”

“a green train is coming
down the tracks”

“a group of elephants walking

“aliving area with a

television and a table”



References for Diffusion Models

® Deep unsupervised learning of nonlinear thermodynamics, (Sohl-Dickstein
et al. 2015).

e Denoising Diffusion Probabilistic Models (Ho et al. 2020)

e Diffusion Models Beats GANs on Image Synthesis, (Dhariwal & Nichol
2021)

e Classifier-Free Diffusion Guidance (Ho & Salimans 2021)

e Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding

e Improved Denoising Diffusion Probabilistic Models (Nichol & Dhariwal
2021)

e GLIDE: Towards Photorealistic Image Generation and Editing with
Text-Guided Diffusion Models (Ramesh et al. 2022)

e Understanding Diffusion Models: A Unified Perspective (Luo et al 2022)




Discussion

e Larger datasets and GPU/TPU usage led to visually stunning generation
results.
m From 1.2M ImageNet to 5B Laion dataset
= Hundreds of GPU hours for training
e Going forward, it is extremely important to cut costs of these inference
algorithms
m Hinted the use of parallel decoding and MRF methods for cutting
down the costs
e More detailed algorithms will be presented by Dilip and
Sadeep
e Progress in generation hinges on evaluation methods
m Shobhita will present new evaluation methods



